Connexion
Accédez à votre espace personnel
ÉCONOMIE
Décryptages éco Intelligence économique Intelligence sectorielle Libre-propos Parole d'auteur Graphiques Notes de lecture
STRATÉGIE & MANAGEMENT
Comprendre Stratégie & Management A propos du management Parole d'auteur Notes de lecture
IQSOG
RUBRIQUES
Économie généraleFranceEurope, zone euroÉconomie mondiale Politique économique Emplois, travail, salairesConsommation, ménagesMatières premières Finance Géostratégie, géopolitique ComprendreManagement et RHStratégieMutation digitaleMarketingEntreprisesFinanceJuridiqueRecherche en gestionEnseignement, formation
NEWSLETTERS
QUI SOMMES-NOUS ?


L'avenir est largement imprévisible et le restera

Publié le lundi 29 juin 2020 . 5 min. 16

Voir plus tard
Partager
Imprimer

On entend un peu partout que l’IA repousse sans cesse les limites de la connaissance, et c’est vrai bien sûr. Mais quelles sont les vraies limites ? peut-on, avec de l’IA et du machine learning, prévoir des résultats importants dans le monde réel, en particulier en sciences sociales ?

Une étonnante étude qui vise à répondre à cette question vient de paraître, signée de 115 scientifiques, sous le leadership de Matthew Salganik.

Les chercheurs ont adopté une démarche courante en IA mais rare en sciences sociales : un concours entre équipes de chercheurs. Ils ont lancé un appel à projets, en définissant les règles du jeu. Pas moins de 160 équipes ont concouru. L’intérêt de la méthode, c’est que si tel ou tel programme échoue, on ne peut pas dire que c’est parce qu’il était mal conçu. Le programme gagnant peut être considéré comme ce qui se fait de mieux, et donc comme une bonne mesure de la prévisibilité (ou de l’imprévisibilité) intrinsèques de ce qu’on étudie.

Et justement, ce qu’on étudie est important. Ici, les chercheurs ont utilisé une base de données très riche, qui porte sur des familles socialement fragiles. Déjà utilisée par des centaines de projets de recherche en sociologie, la base comprend des données sur 4.000 familles, avec une richesse d’informations stupéfiante : près de 13.000 informations sur chaque famille. Les données sont collectées en 6 vagues, quand l’un des enfants de la famille naît, puis quand il fête ses 1er, 3e, 5, 9e et 15e anniversaires. On peut donc suivre l’évolution de ces familles pendant 15 ans, dans les moindres détails.

Pour les besoins du concours, toutes les équipes ont eu accès à toutes les données sur une partie de la base, ce qui leur a permis d’entraîner leurs algorithmes. On leur a ensuite donné accès au reste de la base, mais en leur fournissant seulement les données des cinq premières vagues et en leur demandant de prévoir les résultats clés de la sixième. L’idée est qu’un algorithme apprend, dans la base d’entraînement, à déceler les informations clés qui sont prédictives des résultats de la sixième vague : il prouve ensuite cette capacité de prédiction quand on lui soumet des cas sur lesquels il n’a pas été entraîné. S’il sait tout ce qui est arrivé à une famille pendant 15 ans, l’algorithme peut-il, par exemple, prévoir si le chef de famille perdra son emploi ; si la famille sera expulsée de son logement ; ou quels seront les résultats scolaires de l’enfant ?

La réponse dépend bien sûr des algorithmes : parmi les 160 concurrents, tous ne font pas aussi bien. Mais ce qui est intéressant, c’est de regarder le score des meilleurs. Et le verdict permet de dégager au moins deux grands messages.

- Parmi les six résultats qu’il fallait prévoir, il y a une nette différence dans la qualité de prévision entre deux sortes de scores. Ceux qui décrivent des événement uniques – par exemple, la famille a t elle été expulsée de son logement – sont presque totalement imprévisibles. Ces résultats sont trop aléatoires pour être anticipés, même avec toutes les données possibles. En revanche, les résultats qui reflètent la moyenne d’un grand nombre d’événements (par exemple, la moyenne des notes à l’école) sont nettement plus prévisibles. C’est une idée de base en statistiques, mais qu’on oublie souvent : prévoir un seul événement est infiniment plus difficile que prévoir la moyenne de plusieurs événements du même type.

- La deuxième conclusion est encore plus importante : même les meilleurs modèles ne savent pas prévoir grand chose. Ils font mieux que les humains qui essaient de faire la même prévision, bien sûr.  Mais même avec toutes les données imaginables, même avec le meilleur algorithme, l’IA est très loin d’être omnisciente. Elle fait encore beaucoup, beaucoup d’erreurs de prévision.  Pour tout dire, elle fait à peine mieux qu’un modèle de coin de table concocté à partir de quatre paramètres seulement. 

Ce que cette expérience nous donne, c’est une grande leçon d’humilité sur notre capacité à prévoir le monde réel, en particulier quand il est question de comportements humains. Selon ses convictions philosophiques, on peut y voir différentes causes. Peut-être est-ce une conséquence du libre arbitre des humains en question. Ou de notre incapacité à deviner les voies impénétrables de la divine providence. Ou simplement une manifestation de l’incertitude aléatoire, cette incertitude irréductible qui caractérise de nombreux domaines, depuis les jeux de hasard jusqu’à la physique des particules.

Ce qui est sûr, et que nous avons intérêt à nous rappeler quand nous faisons des plans et des prévisions en tous genres, c’est que l’avenir est en très grande partie imprévisible. La seule chose qu’on peut prévoir, c’est qu’il le restera.


x
Cette émission a été ajoutée à votre vidéothèque.
ACCÉDER À MA VIDÉOTHÈQUE
x

CONNEXION

Pour poursuivre votre navigation, nous vous invitons à vous connecter à votre compte Xerfi Canal :
Déjà utilisateur
Adresse e-mail :
Mot de passe :
Rester connecté Mot de passe oublié?
Le couple adresse-mail / mot de passe n'est pas valide  
  CRÉER UN COMPTE
x
Veuillez saisir l'adresse e-mail utilisée pour créer votre compte Xerfi Canal.
Adresse e-mail :

STOCKAGE DE VOS DONNÉES

Xerfi Canal utilise et stocke des informations non sensibles (par exemple : adresses IP, données de navigation, identifiants) obtenues par le dépôt de cookies ou technologie équivalente sur votre appareil. L’utilisation de ces données nous permet de mesurer notre audience et de vous proposer des fonctionnalités et des contenus personnalisés.

Les données stockées par Xerfi Canal ne sont en aucun cas partagées avec des partenaires ou revendues à des tiers à des fins publicitaires.

Vous pouvez librement donner, refuser ou retirer à tout moment votre consentement en accédant à notre outil de paramétrage des cookies.

ACCEPTER PERSONNALISER REFUSER

PERSONNALISEZ LE STOCKAGE
DE VOS DONNÉES

Cookies Google AnalyticsCes cookies permettent d’obtenir des statistiques de fréquentation anonymes du site Xerfi Canal afin d’optimiser son ergonomie, sa navigation et ses contenus.

Cookies de personnalisation du parcours de visiteCes cookies nous permettent de vous proposer, en fonction de votre navigation sur le site, des contenus et/ou des offres de produits et services les plus adaptés à vos centres d’intérêt.

Vous pourrez librement et à tout moment modifier votre consentement en accédant à notre outil de paramétrage des cookies.

VALIDER ANNULER